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Semi-Annual Status Report 

for the period March 1, 1965 to August 31, 1965 

NASA Grant NsG-6551’36 -01 3-002 

Principal Investigator: Karl J. Casper 

Summary 

The research covered by this status report can be divid d into the t 
following topics: 

(1) Studies of the fundamental response of semiconductor detectors 

to chargedparticles. 

(2) Fabrication techniques for lithium surface barrier silicon detectors. 

(3) Compilation of the computer program for the analysis of beta 

decay spectra. 

Operation of a superconducting magnet in conjuction with solid 

state detectors as a novel and unique beta ray spectrometer. 

(5) Direct observation of the internal Compton effect with the super- 

(4) 

conducting magnet beta ray spectrometer. 

Studies of high 2 semiconductors for improved gamma ray detection. (6) 
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(1) It was proposed to study the response of silicon detectors to 

electrons of different energies. This is most important from the stand- 

point of analysis of beta ray spectra since the response function has been 

found to vary from detector to detector. Silicon detectors with different 

configurations, resistivities, dislocation densities, and orientations will 

be used i n  order to determine the dependence of the response function on 

these characteristics. For this purpose a commercial electromagnet has 

been purchased and is scheduled for delivery by September 1, 1965. A simple 

beta ray spectrometer is being constructed and will be used for these studies. 

An exotic instrument is not necessary since the solid state detector itself 

will be used for the energy calibration. The only requirement is that the 

spect-ter produce a beam of electrons with a relatively narrow energy 

spread. These experiments will be reported in the annual report. 

. 

A vacuum system with a larger diffusion furnace has been completed 

for the diffusion of large volume silicon and germanium detectors. 

original furnace used for this purpose proved to be too small and produced 

an excessive amount of side diffusion of lithium and an uneven junction 

in these large crystals. In processing the crystal, it was necessary to 

reduce the crystal size excessively, and even then the reverse current 

was too large by an order of magnitude for effective lithium ion drifting. 

We expect that this problem will be corrected with the new furnace. 

The 

Large silicon detectors have high capacitances as a result of their 

large areas. Moreover, the surface currents are relatively high since 

high voltages must be used and since the exposed junction surface is quite 
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l a rge .  

a s i l i c o n  detector i n  such a way tha t  t he  p contact area w a s  subs t an t i a l ly  

reduced. 

The o ther  contact w a s  made i n  t h e  center of the  o ther  surface, and the 

crystal  w a s  d r i f t e d  i n  IC-43 fluorochemical. In Fig. 1, t h e  crystal is 

shown during the ac tua l  d r i f t i n g .  

the  junc t ion  region. 

An attempt w a s  made to  reduce both of these fac to r s  by d r i f i n g  

Lithium w a s  diffused i n t o  the sides and one surface of the c r y s t a l .  

Ihe circle of h b b l e s  GP the s w f a e e  ind ica tes  

The d r i f t  is proceeding toward the  center  of t he  crystal. 

Fig. 2 shows the c r y s t a l  i n  cross sec t ion  after d r i f t i n g ,  and a f t e r  

s t a i n  etching. 

dark, t h e  n-type l i t h ium r i c h  region is stained very l i g h t ,  and the l i t h i u i -  

ion compensated region i s  intenaediate  i n  tone. 

be seen that the area  of contact between the p layer  and the i n t r i n s i c  

region is  q u i t e  s m a l l .  Ordinar i ly ,  the  e n t i r e  top surface would cons t i t u t e  

the  p-type region. 

The p-type mater ia l  which is uncompensated is  s ta ined  very 

From t h i s  f i gu re  it can 

Af ter  the d r i f t ,  i t  w a s  found tha t  the reverse current  leakage was 

about t he  s a m e  as most de tec tors  a t  room temperature. I t  has been our  

experience i n  the past  w i t h  junct ions formed on the  [lll] surface that  the 

cur ren ts  are ra the r  high. In  t h i s  case only a s m a l l  reduction, perhaps a 

f ac to r  of t w o ,  could have been expected. Hence, the  measurement of t he  

reverse  current  which depends on a number of things is not too  s ign i f i can t .  

When cooled to  l iqu id  nitrogen temperature, however, t h e  current  was reduced 

below lo-' amps and the de tec tor  operated very successfully.  

more s ign i f i can t ly ,  the capacitance of t he  detector  was only 15 pf a t  l iqu id  

Moreover, and 

nitrogen temperature. 

g rea te r  than 50 pf. Since the  noise  is d i r e c t l y  r e l a t ed  t o  the  de tec tor  

Detectors of t h i s  s i z e  o rd ina r i ly  have capacitances 
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Fig.  1 Large volume detector during d r i f t  i n  FC-43 fluorocarbon. The 

bubbles indicate the drifted region. 
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Fig. 2 Cross-section of large volume detector after drifting and stain 

etching . 

. 
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capacitance, such detectors should have inherently lower noise and therefore 

better resolutions than detectors of the same size but with ordinary configura- 

tions. One disadvantage of this detector can be seen in pig. 2. There is 

still a small window of original p-type material which can interfere with 

measurements of heavy charge particles and would therefore have to be masked 

off fraa the incident beam.  

The low Z of silicon makes it difficult to use for gamma-ray detection 

although the large volume of this detector somewhat compensates for it. 

Two spectra are shown in Figs. 3 and 4, illustrating the detection capabilities 

for gamma rays of Hg203 and Cs13'. 

whose cross section is high relative to that for the photoelectric effect 

at these energies would mask many gamma ray transitions in a decay where 

It is apparent that the Corapton effect 

a large nwber of gamma rays appear. 

2-7 
There have been a number of recent papers describing experiments 

with accelerators which demonstrate the importance of crystal orientation 

on the charged particle energy loss. Essentially, it has been shown that 

if the crystal is oriented so that the charged particle beam is incident 

along the [lll] or [110] axis, the energy loss per unit of range may be 

considerably lower than the average expected loss. As a result of glancing 

atomic collisions, the ions are channeled along particular directions in 

which the electron density is relatively low. 

loss occurs through collisions with electrons, the range of the particle 

in silicon may be significantly increased. 

energy loss in a particular detector may be the result. 

Since most of the energy 

Spectral distortion and incomplete 
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Fig. 4 Gamm ray spectrum of Cs137 as measured with the large volume detector 

of Fig. 2. 
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Two sets of s i l i c o n  wafers cut from the  same ingot have been obtained 

from Geoscience Instruments Corporation. The f i r s t  set is s l i c e d  perpendicular 

to  the  [lll] axis and, when these are fabr ica ted  as de tec tors ,  should exhib i t  

t h i s  anomalously lower energy loss .  The second set of slices w e r e  cu t  

approximately 20' from the  [loo] axis in t h e  d i r ec t ion  of t h e  [ l l O ]  axis 

and 8' off the [110] axis fn the direction of t h e  ill11 ax is .  

slices is shown i n  Fig. 5 .  

on a de tec to r  made from t h i s  c r y s t a l ,  t he  energy loss w i l l  be maximized 

and w i l l  be very close t o  the average energy loss expected. 

are now being f in i shed  and w i l l  be tes ted t o  determine i f  there  are any 

substant ive d i f fe rences  in t h e  measured spectra. 

One of these  

I t  has been suggested3 t h a t  f o r  p a r t i c l e s  incident  

These de tec tors  

F ina l ly ,  copper p l a t ing  techniques have been used i n  t h e  past  on 

germanium to reduce t h e  prec ip i ta t ion  of l i thium. Ihe copper is pla ted  

p r io r  t o  any processing and diffused i n t o  the  germanium on a hot  p la te .  

W e  have found t h a t  d r i f t i n g  large volume de tec tors  by t h i s  method w a s  

rather d i f f i c u l t .  The l i thium d r i f t  tended t o  s t o p  a t  about 5 to  6 mm, 

and, i n  some cases, it w a s  impossible to  d r i f t  a t  a l l .  W e  have a l t e r e d  

t h i s  technique i n  the  following manner. Copper is plated onto the  germanium 

c r y s t a l  i n  t h e  usual manner, but not diffused. Lithium is then evaporated 

onto one sur face ,  and both the  lithium and the  copper are diffused a t  the  

same time a t  370' C. 

to  l i gu id  ni t rogen temperature. A t  t h i s  temperature, t h e  l i thium i s  near ly  

immobile, but t he  copper is  s t i l l  mobile and over a period of severa l  days 

w i l l  d i f fuse  throughout t he  c rys ta l  f i l l i n g  us  the  vacancies. W e  have 

The wafer is then removed from the  s y s t e m  and cooled 
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Fig. 5 Silicon crystal cut 20" froln [lo01 axis in direction of the [110] 

axis and 8" off the [llO] axis in the direction of the [lll] axis. 
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found that it has been possible to drift nearly to the back of the crystal 

after this treatment. In some of the crystals in which no drift had been 

possible before, lithium-ion drifting occurred quite readily. 

(3) Fabrication techniques for lithium drifted silicon surface 

barrier detectors. This section is being submitted for publication to 

Nuclear Instruments and Methods. A preprint is attached to this report. 

Compilation of the computer program for the analysis of beta (3) 

ray spectra measured by lithium drifted surface barrier silicon detectors. 

We have received several inquiries about the program used in the paper 

"Beta Decay of Rbg6", a preprint of which was attached to the annual report 

for the period March 1, 1964 to February 28, 1965. As a result the program 

has been compiled and a complete description of the steps prepared. This 

is being submitted to the Subcommittee for Nuclear Structure of the Committee 

on Physical Sciences of the National Research Council, National Academy 

of Science for inclusion in their list entitled Abstracts of Computer 

Codes. A copy is attached to this report. 

(4) We have performed recent experiments using silicon solid state 

detectors in conjunction with a superconducting solenoid as a novel form 

of beta ray spectrometer. Although this work was begun a couple of years 

ago, it was able to be continued only by virtue of this grant. A diagram 

of the apparatus is shown in Fig. 6. The two detectors are mounted at the 

ends of a probe with a radioactive source in the center, and this probe 

is then placed in the superconducting solenoid. At fields of 25 to 30 

kilogauss, all of the beta rays emitted by the source are confined to a 

cylinder of 2 to 4 mm radius along the axis of the spectrometer. In this 
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Fig. 6 Superconducting magnet beta ray spectrometer. 
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way they must be incident on one of the two detectors. 

spectrometer is obtained with many advantages over conventional spectrometers: 

(1) 

the primary causes of spectral distortion. (2) The 4n geometry enables 

one to use very weak sources, on the order of 20 nanocuries. This means 

that the source thickmse aid hence the electron scattering in the source 

is considerably reduced which eliminates much of the spectral distortion 

at low energies produced by this effect. (3) Since solid state detectors 

are used, no energy selection by the magnetic field is necessary since the 

detectors themselves determine the energy of the beta ray. 

unnecessary to take point by point plots such as is done with conventional 

spectrometers, since all counts are recorded with a multichannel analyzer. 

(4) 

solid angle since there is no focussing of the gamma rays by the magnetic 

field. 

in Fig. 7. 

use of the spectrometer. 

A true 4n beta ray 

The absence of any baffles for focussing electrons elininates one of 

It is therefore 

Finally, the gama ray flux striking the detector is reduced by the 

This reduction is shown in the comparison of the two Bi207 spectra 

The Compton distribution has been significantly reduced by the 

The initial experiments have used only one detector at a time. 

The increase in collection is in good agreement with source strength deter- 

mined from knowing the specific activity and the amount of material pipet&ed 

onto the source backing. However, in Fig. 7, it is readily seen that the 

backscattering tail is still a significant fraction of the spectrum. 

Recently, experiments have been performed in an effort to elimintate 

this tail. The two detectors mounted in the probe were run in parallel 
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207 
Fig. 7 Comparison of Bi spectrum measured in superconducting solenoid 

to spectrum measured outside solenoid with source close to detector 

showing diminution of gamma-ray background. 



I 

too(: 

m 
4- c 
1 
0 
0 

. . *  
. e  ..-. 

Spectrum .. outalde . solenoid 
0 . .  

*..# . /*. 
*."..*..rr.*.",+'.**~ *. .*.,+* 

*. 

.. 

.. 
% .  . . I 

J 
2 Field on . .  0 . ... ..... &:e.*..*+- .* . . . *.e* .. . .-e . .* .**. 

I I I I I I I 

100 200 300 350 
channel 

0 



1 .  
1 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
1 
0 
I 
I 
I 

22 

from the same preamplifier. Electrons backscattered from one detector 

are still confined to move in the axial cylinder and will be incident on 

the detector at the other end of the probe. Thus, in this coincidence 

arrangement, the total electron charge should be collected and the back- 

scattering tail eliminated. The Bi207 spectrum measured in this way is 

shown in M-g. 8. ?%e backscattering has been eliminated, but a new tail 

much smaller in amplitude is evident. Some continuous beta-ray spectra 

were also measured, and this data is now being analyzed to determine if 

these spectra are undistorted. As soon as that analysis is complete, 

a paper on the operation of the spectrometer will be submitted to the 

Review of Scientific Instruments. 

(5) As mentioned in Section 4, a different type of tail can be 

seen when the detectors are operated in parallel. This tail appears to 

consist of electrons produced by the internal Compton effect. The measure- 
8 

ment here, insofar as we can determine, is the first direct spectral 

observation of this effect. 

The internal Compton effect is a quantum mechanical process quite 

analogous in the classical limit to internal bremsstrahlung. The internal 

conversion process consists 0% the emission of an orbital electron instead 

of a nuclear gamma ray with energy equal to the transition energy less 

the binding energy of the electron. 

gamma ray spectrum and a continous electron spectrum which is the result 

of the scattering of an outgoing photon from one of the orbital electrons 

with the possible emission of the electron. In the ordinary Compton effect, 

Accompanying this process is a continuous 

the nucleus does not participate in the scattering process and the electron 
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Fig. 8 Bi207 spectrum measured with the two detectors in the spectrometer 

run in coincidence in order to remove the backscattering tail. 



100K 

IOK 

u) 

t 
3 
0 
V 

t 

IK  

100 

.) 975 ke V 

.) 

P' keV 

I I I I 

100 200 
Chonnel number 



25 

I 

has a maximum energy given in the case where the gamma ray strikes the electron 

and recoils at an angle of 180’. 

the nucleus is available to participate in the momentum exchange and therefore 

no Compton edge is observed. 

In the internal Compton effect, however, 

Calculations of the internal Compton effect have been made by Cooper 

9 
and Morrison, Spruch and Gcertzel,” and t w c  Riis~iaiia.~~’~~ -per and 

Morrison limited themselves to high-energy electric dipole transitions, 

Spruch and Goertzel to magnetic multipole transitions, and the Russians 

to electric multipole transitions, but with a Z = 0 approximation which 

means that these results are of little practical use. To date no calculations 

exist for electric multipole transitions taking into account the Z of the 

nucleus. As a result, it is difficult to interpret most experimental 

results. 

Fortunately, the 1063.4 keV transition in Bi207  is a pure M4 transition. 

The formulas of Spruch and Goertzel are therefore applicable. From the 

intensity of the 975 keV K internal conversion line and the measured value 

of the internal conversion coefficient, the absolute strength of the source 

can be calculated thereby determining the intensity of the internal Campton 

effect. The theoretical expression was integrated over all angles, the 

distribution was corrected for the finite energy resolution of the detectors, 

and both the K and L conversion line contributions were taken into account. 

The comparison between theory and experiment is shown in Figs. 9 and 10. 

The agreement is remarkable considering the approximations that are used 

for the theoretical calculations. The theory is severely tested for low 
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Pig. 9 This is an enlarged portion of Fig. 8 showing the 975 keV internal 

The circled dots are the conversion line with the remaining tail. 

data points, the x's are the calculated points for the internal 

CoaPpton effect with binding energy included, and the triangular 

points are the calculated points for the internal Capton effect 

not Including the binding energy in the calculat&ane. 
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F'ig. 10 This  is the same comparison as Fig. 9, except p lot ted  on s e m i -  

8 
I 
I 

8 
1 
i 

logarithmic paper. The triangular dots  are the calculated points 

with binding energy considered, the c i rc l ed  dots  are the calculated 

points  with no binding energy included, and the small dots  are 

the data points. 
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gamma ray energies, that is, for electron energies near the internal conversion 

peak itself. This is evident from the increasing disagreement as the conversion 

line energy is approached. 

Some previous experimental measurements have been made by Brown 
14 and Stump13 and by Lindqvist, Pettersson and Siegbahn on the nucleus 

137 Cs . The measurement performed by them is much more 

the continuous beta ray spectrum from the natural beta 

point energy near the conversion line. In both cases, 

difficult since 

decay has an end- 

angular correlations 

between the gamma rays and the scattered electrons were measured with no 

agreement in one experiment and only rough agreement in the other. 

Thus, the experiment performed with the superconducting solenoid 

appears to be the first direct spectral observation of this effect. Because 

of the extremely small source strength (about 5 orders of magnitude smaller 

than that used in conventional spectrometers) and because of the configuration 

of the spectrometer, we feel that this effect is certainly not ascribable 

to any instrumental effect as is the case with convential spectrometers. 

These results on the internal Compton effect indicate that the spectrometer 

itself is a sensitive instrument subject to little distortion, and capable 

of the most refined measurements. 

(6) The first high 2 semiconductor to be studied has been indium 

antimonide. Doped samples with high resistivities ( - 30 ohm-cm) were 

obtained from Monsanto. The chemical processing and etching techniques 

used were similar to those for germanium and silicon and good polish etches 

could be obtained. Unfortunately, the doped carrier concentrations were 

8 
1 
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substantially below the intrinsic carrier concentration. As a result, 

the crystal was n-type at room temperature, changing to p-type near liquid 

nitrogen temperatures. Lithium diffusions could be made into the material 

itself, but the diode structure was not stable and even at liquid nitrogen 

temperature, the reverse current was very high. Additional crystals will 

be obtained, b~+, the PiGblGm is to f lnd crystals in which the carrier 

concentration of the impurity is higher than the intrinsic carrier concentra- 

tion, yet lower than the diffused lithium concentration. 

Gallium antimonide crystals have been on order with several suppliers 

for more than three months, but these suppliers are apparently having 

difficulty growing this material to specification. We have been in contact 

with Dr F. J. Reid of Batelle Xemorial Institute, who has some gallium 

antimonide crystals with low carrier concentrations which were especially 

grown for him. He has promised to send us some of these in the near future. 
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Fabricat ion Methods f o r  L i t h i u m  Dr i f ted  Surface 
* 

Barrier S i l i c o n  Detectors 

H. M. Murray, J. W. Harpster' and K. J. C a s p e r  

Department of Physics, Western Reserve University,  Cleveland, Ohio 

Techniques for t h e  f ab r i ca t ion  of l i thium sur face  barrier s i l i c o n  de tec to r s  

a re 

The 

keV 

1. 

presented. A l l  important chesnical procedures are described i n  d e t a i l .  

detectors made by these techniques exhib i t  reso lu t ions  of 15 t o  30 

on in t e rna l  conversion e lec t rons  when operated a t  room temperature. 

Introduct ion 

A number of papers have appeared descr ibing methods of f ab r i ca t ing  1-7 

l i th ium d r i f t e d  sol id  state s i l i c o n  detectors. The de tec tors  described 

i n  these  papers e i t h e r  have not been of t h e  surface-barr ier  type or else 

requi re  cool ing for best operation. The methods described here  are 

cons is ten t ly  dependable for  t h e  preparation of su r face  barrier types which 

exhib i t  good reso lu t ion  a t  room temperature. 

2. Chemical Spec i f ica t ions  

Elec t ronic  grade chemicals are used throughout t h e  f ab r i ca t ion  process. 

E i t h e r  absolu te  ethanol or methanol is s u i t a b l e  where t h e  use of alcohol 

i s  spec i f ied .  The a c i d  concentrations are 70% HNO 46% HF, and glacial 3' 

* 
Supported i n  part by a grant from t h e  National Aeronautics and Space 

Admini strat ion. 

'Present address: Department of E lec t r i ca l  Engineering O h i o  S t a t e  

Universi ty ,  Columbus, Ohio. 
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acetic acid, and a l l  etches are prepared and used i n  a Teflon beaker. 

Bake r  Atanex Immersion Gold Solution is used i n  t h e  e l ec t ro l e s s  gold 

plat ing.  

stored i n  mineral o i l .  For evaporation, the desired amount of l i thium 

is c u t  off t h e  end of t h e  rod w i t h  a diagonal w i r e  c u t t e r  and cleaned 

w i t h  t r ichloroethylene.  

be handled, and the  etched sides of the c r y s t a l  are kept scrupulously 

clean. Generally, s t a i n l e s s  steel tweezers a r e  used t o  hold t h e  c rys t a l  

wherever possible. 

* 

The l i th ium is obtained in t he  form of rods t  and is kept 

Vinyl gloves- a r e  worn whenever the  c r y s t a l  must 

In  discussing the c r y s t a l  after l i t h ium di f fus ion ,  t he  term "front 

surface" refers t o  t h e  surface on which l i thium has been diffused,  and 

"back surface" refers t o  the  surface toward which the  l i t h ium is drifted.  

3. Crystal  Spec i f ica t ion  and Evaluation 

The s i l i c o n  c r y s t a l s  are obtained a s  wafers sliced and lapped t o  the  

* 
desired thickness from Geoscience Instruments Corporation. The s i l i c o n  is 

specified t o  be p-type, boron doped, f loat-zone re f ined ,  50-200 ohm cm, w i t h  

a d i s loca t ion  count less than 20,OOO/cm 

although c r y s t a l s  cu t  w i t h  d i f f e ren t  o r i en ta t ions  have been used. 

2 
The or i en ta t ion  is usually (111 1 

A s  a 

f roa  each 

(1) 

first step the  dis locat ion pa t te rn  is determined. A s ing le  slice 

ingot is etched i n  t h e  following manner: 

The c r y s t a l  is lapped f irst  w i t h  20 micron and then 10 micron 

* 
Engelhard Indus t r ies ,  Inc. ,  Baker Platinum Division, 113 Astor Street, Newark, N.J.  

'Lithium Corporation of America, Bessemer C i t y ,  North Carolina 

t t W i l s o n  Tru-Touch, Becton, Dickinson and Co., Rutherford, New Jersey 
* 
110 Beekman Street, New York, N.Y. 
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aluminum oxide powder, 

washed successively i n  

3 

cleaned u l t rasoncia l ly  i n  t r ich loroe thylene ,  and 

alcohol and d i s t i l l e d  w a t e r .  

(2) A 2:l mixture of HNO and HF' is  prepared i n  a Teflon beaker 

and cooled i n  ice r a t e r .  The wafer is then etched f o r  45 seconds i n  t h i s  

solut ion.  

d i s t i l l e d  water u n t i l  a l l  of t h e  etchant has been displaced by water. In 

a l l  of t he  pol ish etches,  no air  i s  pewitted t o  cane i n t o  contact with 

the wafer w h i l e  it is being act ivated by acids .  

3 

The e tch  is quenched by placing the  beaker under running 

(3) The wafer is then placed immediately i n t o  a Teflon beaker 

containing a 10:3:1 mixture of HOAc, HNO and HF i n  s u f f i c i e n t  aIDOUnt 

t o  immerse the  wafer. 

least four  hours a t  room temperature, a f t e r  which t h e  etch is again 

quenched w i t h  d i s t i l l e d  water. 

3 

The c r y s t a l  is  etched i n  t h i s  so lu t ion  for at 

I n  most of the crystals, an outer r i n g  of high densi ty  d is loca t ions  

is observed. Such a r ing  is  e v i d e n t  i n  t h e  c r y s t a l  sham i n  Fig. 1. 

The s i z e  of t h i s  r i n g  i s  approximately the  same f o r  a l l  of t h e  s l i c e s  of 

t h e  ingot. Therefore, before any fur ther  processing, t h i s  high d is loca t ion  

r i n g  must be removed from each c rys t a l .  

high even i n  the  cen te r  of the  c r y s t a l ,  the  ingot is rejected a s  unsuitable.  

4. 

I f  t h e  d is loca t ion  densi ty  is 

Preparation of t he  Crystal  for Diffusion 

Each c r y s t a l  is sanded down t o  remove t h e  high d is loca t ion  r ing  

using the  small lapidary w h e e l i  shmn i n  Fig. 2 and c l o t h  backed, 

#320 s i l i c o n  carbide discs. The c rys t a l  and t h e  disc a r e  kept moistened 

t o  prevent overheating of t h e  c rys ta l .  The sides a r e  then smoothed by 

'Yodel RBMD, Lee Lapidar ies ,  6617 Lorain Ave., Cleveland, Ohio 
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l i g h t  hand sanding w i t h  s i l i c o n  carbide paper. The faces  are lapped and 

the  wafer is  u l t rasonica l ly  cleaned i n  t r ichloroethylene and washed 

successively w i t h  alcohol and d i s t i l l ed  water. 

5 .  Diffusion of Lithium 

Two d i f fus ion  furnaces have been used. The first, Bhown i n  Fig. 3, 

-5 is operated i n  a vacuum of about 10 IBRI. Lithium is  evaporated from the 

basket onto the  surface of t h e  c rys t a l .  The furnace is  then raised t o  

a temperature of 370 0 
C as  measured w i t h  t h e  platinum resist0r.n A f t e r  

f i v e  minutes, t h e  current  is  turned o f f ,  and a i r  is  let i n t o  the  system 

immediately. The c r y s t a l  i s  then cooled by placing it  on a carbon block. 

A c r y s t a l  diffused i n  t h i s  manner is shown i n  Fig. ,4.  The dark l i t h ium 

hydroxide circle ind ica t e s  t h e  area of diffusion.  Diffusion of l i thium 

'on t h e  sides of t h e  c r y s t a l  is minimized, but t h e  f i n a l  detector size is  

resfricted by the aper ture  i n  t h e  mounting p la te .  

The second furnace,  shown i n  Fig. 5 ,  is similar t o  t h e  one used by 

Lothrop and Smith,  and is a l s o  operated i n  a vacuum. Li thium metal is 7 

evaporated onto the  surface of t h e  unheated c r y s t a l .  The c r y s t a l  i s  then  

heated t o  a diffusion temperature of 370 0 
C ,  as measured by mounting t h e  

platinum r e s i s t o r  on t he  heat ing plate .  The valves for t h e  pumps are 

closed, and approximately 1 l i t e r  of nit rogen gas is  let i n t o  the  bell  jar. 

Under these condi t ions,  t he  diffusion rate is 0.1 -/minute f o r  s i l i c o n ,  

and a diffused l aye r  of 0.1 mm f o r  each mm of c r y s t a l  thickness  is used. 

V C .  E. #30707-7A, Engelhard Indus t r ies ,  Inc . ,  Instruments and Systems 

Division, 850 Passaic Ave., E a s t  Newark, New Jersey 
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A f t e r  d i f fus ion ,  t h e  current  for t h e  heat ing coil is  turned o f f ,  a i r  let 

i n t o  t h e  vacuum system immediately, and t h e  wafer cooled by placing it 

on a carbon block. 

A f t e r  t h e  c r y s t a l  has reached room temperature, t h e  l i t h ium hydroxide 

coa t ing  is washed from the  sur face  of t h e  s i l i c o n  w i t h  d i s t i l l e d  water. 

The face is  lapped zind the sites are sanded to remove all. traces of this 

coating. The c r y s t a l  is then scrubbed w i t h  cot ton swabs moistened w i t h  

d i s t i l l e d  water. 

6 .  S t a i n  Etching 

8 S t a i n  etching techniques are used t o  reveal t h e  ex ten t  of t h e  l i thium 

di f fus ion .  The s t a i n  etch i s  an accurate  1OOO: l  mixture of HF aad BNO 

i n  s u f f i c i e n t  quant i ty  that the  wafer i s  completely covered by t h e  so lu t ion  

3 

i n  a slag11 Teflon beaker. The beaker containing t h e  wafer w i t h  t h e  l i t h ium 

di f fused  face down is  placed d i r ec t ly  under an incandescent l i g h t  u n t i l  

hydrogen bubbles are seen on t h e  silies and surface of the  wafer. After 

t h e  back sur face  has s ta ined  darkly, t h e  wafer i s  removed from the  etch 

and washed i n  d i s t i l l e d  w a t e r .  The p-type mater ia l  should s t a i n  dark ly  

i n  comparison t o  t h e  n-type, lithium-rich region. The usual p rac t i ce  has 

been to ignore t h e  r e s u l t s  of t h e  f i r s t  etch of a f r e sh ly  prepared so lu t ion  

and t o  l a p  and sand t h e  c r y s t a l  and etch it again i n  t h e  same so lu t ion ,  5-L 

S ta in  etch so lu t ions  can be used w i t h  s a t i s f a c t o r y  r e s u l t s  for  approximately 

an hour a f t e r  mixing. / 

The c r y s t a l  shown i n  Fig.  6 w a s  d i f fused  i n  t h e  furnace of Fig. 5 and 

has been s t a i n  etched. This f i g u r e  shows t h e  importance of t h e  s t a i n  etch 
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f o r  determining the  q u a l i t y  of the  junction. Side d i f fus ion  of l i th ium 

has occurred on t h i s  crystal  andmust be removed before  a good diode can 

be obtained. The c r y s t a l  i s  sanded and checked with s t a i n i n g  u n t i l  t h e  

s ides  of t h e  wafer show a sharp,  even junc t ion  with no evidence of 

d i f fused  l i thium on t h e  s ides .  Figure 7 shows t h e  crystal of Fig. 6 

a f t e r  t h i s  processing. 

W i t h  the  crystal shown i n  Fig. 4 ,  t h e  s ides  are usual ly  sanded down 

t o  t h e  l i t h i u m  hydroxide c i r c l e .  A t  t h i s  po in t ,  the  s t a i n  etch i s  used, 

and t h e  c r y s t a l  i s  sanded fu r the r ,  i f  necessary, u n t i l  a good junc t ion  

is observed. 

7 .  Electroless Gold Contacting 

The c r y s t a l  is now lapped and sanded t o  remove t h e  s t a i n  etch. As 

before,  af ter  sanding i t  i s  cleaned u l t r a son ica l ly  with t r ich loroe thylene ,  

r insed  successively with alcohol and d i s t i l l e d  water, and scrubbed w i t h  

cot ton swabs moistened w i t h  d i s t i l l e d  water. I n  order t o  provide e l e c t r i c a l  

contac ts  t o  t h e  faces  of t h e  wafer, an electroless gold so lu t ion  cons is t ing  

of 8 drops of Atnmex Immersion G o l d  Solut ion,  6 drops HF, and 40 m l  of 

d i s t i l l e d  w a t e r  is prepared i n  a Pyrex beaker. The wafer is placed i n  t h i s  

so lu t ion  and is heated on a hot p la te  u n t i l  t he  sur face  of t h e  wafer is 

covered with gold. I t  i s  then washed i n  d i s t i l l e d  water, and t h e  f l a t  

sur faces  aremasked with Apiezon Wax W?. 

pax by using co t ton  swabs moistened l i g h t l y  w i t h  t r ichloroethylene.  Af te r  

r i n s ing  t h e  wafer successively w i t h  alcohol and d i s t i l l e d  water, the  gold i s  

The s ides  are cleaned of any excess 

tJames G.  Biddle Coo, Plymouth heet ing,  Pennsylvania 
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removed from t h e  sides w i t h  aqua reg ia ,  and the  c r y s t a l  is washed i n  

d i s t i l l e d  water. 

8 .  Etching and D r i f t  

The wafer is naa etched i n  

HN03, HF, and H a c  i n  a Teflon 

CP-4A cons is t ing  of a 5:3:3 so lu t ion  of 

beaker. The etching time is  2 1/2 

minutes a t  roam temperature. The so lu t ion  is  agitated constant ly  

during etching,  and the  etch is quenched i n  d i s t i l l e d  w a t e r .  

Af t e r  t h e  w a f e r  has been washed free of e tchant ,  it is placed i n  

a beaker of t r ich loroe thylene  to remove the Apiezon wax. 

then washed successively i n  t r ichloroethylene and alcohol and dried 

w i t h  nitrogen gas. 

The wafer is  

The reverse current  i s  checked a t  100 v o l t s  bias, and, is less 

than 10 pa, t he  wafer i s  d r i f t ed .  

than 10 pa,  t h e  wafer is lef t  under a reverse  bias of 400 v o l t s  for 

approximately 12 hours. If t h e  reverse cur ren t  a t  100 v o l t s  i s  still  

high a f t e r  t h i s  t i m e ,  t h e  f ron t  and back surfaces  are remasked and 

t h e  wafer is re-etched. 

a few etches, the t roub le  i s  usually a t t r i b u t a b l e  t o  l ineage,  and 

If t h e  reverse  cur ren t  is g rea t e r  

If t h e  current i s  not reduced to  10 pa after 

t h e  crystal i s  discarded. 

9. Dri f t ing  

Three d r i f t i n g  methods, 3’4’6 described i n  de ta i l  by o thers ,  have been 

used w i t h  no not iceable  differences i n  the  f i n a l  r e s u l t s .  The d r i f t  may 

be stopped a t  some desired depth ,  but it is  usual ly  continued u n t i l  t h e  

back surface is  reached. Soaae overcompensation or excessive concentration 

of l i th ium may occur a t  t h e  back surface,  bu t ,  w i t h  the  s ta in-etch 

procedures described i n  t h e  next sect ion,  t h i s  presents  no problem. 
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10. Preparation f o r  F ina l  Etch  

After d r i f t i ng ,  t h e  wafer i s  lapped t o  remove t h e  gold and the s i d e s  

are sanded t o  remove t h e  etched surface. The c r y s t a l  is then s t a i n  

etched, and two e f f e c t s  are observed. The f i r s t ,  shown i n  Fig. 8 ,  is 

t h a t  t h e  canpensated region i s  s ta ined a tone i n t e w e d i a t e  between that  

of t h e  n- and p-type regions. The remainder of t h e  p-type material, 

i n  t h i s  case t h e  dark, i r r e g u l a r  region i n  t he  center  of t h e  back surface,  

can be removed by lapping and sanding the  surfaces  and sides. 

The second e f f e c t  i s  perhaps t h e  most important for the  formation 

of windowless, surface barrier detectors .  As shown i n  Fig, 8 ,  s m a l l  

c i r c u l a r ,  dark ly  s ta ined  regions about 50 p i n  diameter can be observed 

on the  surface of t h e  c r y s t a l  i n  t h e  colapensated material. I f  t he  

back surface is inspected under a low power microscope, it can be seen 

t h a t  t h e  dots are not pa r t i cu la r ly  clear and d i s t i n c t  ( f i g .  9). This 

is  t h e  result of t he  pi leup of l i t h i u m  on t h e  back surface during 

t h e  d r i f t i n g  process. These regions are usually s t rongly n-type, and 

must be removed i n  order t o  achieve a windowless detector .  The back 

sur face  is therefore  lapped u n t i l  sharp, clearly defined dots or circles 

such as those shown i n  Figs.  10 and 11 can be observed. I n  Fig. 10 a 

screw dis loca t ion ,  not observable before d r i f t ,  has become apparent as 

a r e s u l t  of the  l i thium-ion cmpensation. This c r y s t a l  w a s  discarded 

s ince  such a d is loca t ion  prevents the  formation of a good diode s t ruc ture .  

The f ron t  surface of t h e  c rys t a l  is  naw lapped and again p la ted  

w i t h  e l e c t r o l e s s  gold. A f l a t  head s t a i n l e s s  steel screw is mounted 

on the  l i th ium side using DuPont S i lver  Preparation 8030 which hardens 

overnight a t  30 C.  The front  surface and the  head of t h e  screw are 0 

I 
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then masked w i t h  Apiezon Wax W. Same care must be taken s ince  the  heat 

required t o  m e l t  t h e  wax may loosen  t h e  screw. However,. t he  s i l v e r  ceaent 

w i l l  harden again immediately after cooling. The excess wax is reaoved 

frop the  sides and other faces  of the c r y s t a l  using co t ton  swabs moistened 

i n  t r ichloroethylene.  The c r y s t a l  is then r insed  in alcohol and d i s t i l l ed  

w a t e r ,  and the  gold is removed fror t h e  exposed port ion with aqua regia. 

The wafer is  l i g h t l y  lapped and sanded, and scrubbed w i t h  cot ton swabs 

moistened w i t h  d i s t i l l e d  water. 

11. Fina l  E t c h  

A s  shown i n  Fig. 12,  the  s c r e w  is inse r t ed  i n  a p l a s t i c  p i p e t t e  

i n  order to hold the  c r y s t a l  in the po l i sh  etch. The c r y s t a l  i s  etched 

f o r  2 1/2 minutes i n  CP-4A a t  room temperature, and the  etch is again 

quenched w i t h  distilled water. After  t h e  etch, the  de tec tor  is mounted 

i n  a Luci te  holder as shown i n  Fig. 13. Gold is  evaporated on the face 

of t h e  de tec tor  w i t h  t h e  sides of t h e  de tec tor  protected by a mask. An 

ion pump is usual ly  preferred f o r  t h i s  vacuum evaporation, s ince  backstreming 

of o i l  onto the  de tec tor  may occur w i t h  o i l  d i f fus ion  pumps. 

Af t e r  evaporation, t h e  detector  i s  stored i n  darkness f o r  t w o  t o  

three days. The contact  t o  the  evaporated gold l aye r  is made w i t h  a 

0.175 mm gold w i r e  as shown i n  Fig. 14. A t i n y  drop of Aquadag t is placed 

on t h e  surface,  and the  w i r e  is t hen  bent a t  an angle  t o  contact  t he  

detector a t  t h i s  point.  A small drop of General Cement S i l v e r  P r in t  

(with m o s t  of t h e  solvent removed) covers t h e  w i r e  a t  t h i s  contact and 

bonds it t o  t h e  Aquaiiag. 

tAcheson Colloids Co. ,  Port  Huron, Michigan 
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After t h e  contact is  dry, t h e  reverse  current  is measured. In 

general ,  the  best de tec tors  rill have reverse  cu r ren t s  less than 1 pa 

a t  100 vo l t s .  If t h e  cur ren t  i s  higher than t h i s ,  fu r the r  s torage  in 

darkness under bias vol tages  of 200-400 v o l t s  w i l l  occasionally give 

remarkable improv-nt. Where the reverse  cur ren t  is very high, and 

remains so even if the  c r y s t a l  is re-etched, the  problem is general ly  one 

of l ineage  in t he  c r y s t a l .  I t  should be emphasized tha t  w h i l e  l o w  reverse  

cu r ren t s  are des i rab le ,  t h e  change in cur ren t  w i t h  a change in voltage 

between 100 and 400 v o l t s  should a l s o  be 1- and s t e a d i l y  increasing. 

In f a c t ,  f o r  de t ec to r s  greater than 5 mm i n  thickness  and .over 1 cm i n  

diameter, the  reverse  au r ren t s  may be as high as 5 w i t h  de t ec to r s  

whose reso lu t ion  is q u i t e  good. In these cases, an increase  in voltage 

fror 100 to  400 v o l t s  produces an increase  i n  cur ren t  of less than 2 pa. 

Finished detectors are usually stored i n  darkness away fras excessive 

heat. If t h e  s torage  is prolonged, lithium ions  w i l l  occasionally 

disappear fras the  sur faces ,  and the diode s t r u c t u r e  may be destroyed. 

In these cases ,  good performance may be obtained again by lapping and 

sanding the  c r y s t a l ,  and using s t a i n  e tching techniques. If the junct ion 

between t h e  lithium-rich region and t h e  i n t r i n s i c  material is  r e s to red ,  

and well-fowed dots are obtained on - the  back sur face ,  t h e  c r y s t a l  can 

then be etched and f in i shed  as before. mis has restored good detec tor  

proper t ies  in almost every case. 

The detec tors  fabr ica ted  by these means have reso lu t ions  between 

15 and 30 k e V  f o r  t he  975 k e V  conversion l i n e  of Bi207 when opera te4  a t  

room temperature. For alpha p a r t i c l e s ,  reso lu t ions  between 45 and 60 

keV on t he  8.78 MeV alpha-ray of Mesathorium have been measured. 

The diameter of the  de tec to r s  is greater than 1 c m ,  and t h e  thickness  



L 
I 
I 
1 
I 

11 

ranges between 2 and 6 m. If these de tec tors  a r e  operated a t  l a W  

temperatures ,  care must be taken not t o  expose the detector to a i r  

w h i l e  cool  s ince  moisture w i l l  form on t h e  sur face  of t h e  de tec tor  and 

may loosen the gold w i r e  contact .  

pr lmari lp  f o r  beta-ray and electron measurements which are described da 

d e t a i l  elsewhere. 

These detector8 have been used 

9-12 
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Figure Captions 

Fig. 1 Si l icon  wafer a f t e r  d i s loca t ion  showing t h e  high d i s loca t ion  

densi ty  ring. 

Fig, 2 Lapidary wheel used f o r  sanding sides of wafers. 

Fig,  3 Schematic drawing of Pyrex d i f fus ion  furnace. The diffused 

area of t h e  c r y s t a l  is l i m i t e d  by the  s i z e  of t he  aper ture  in 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

t h e  evaporation table. 

S i l i con  c r y s t a l  a f t e r  d i f fus ion  i n  furnace of Fig. 3. The dark 

inner  c i r c l e  is l i t h i u m  hydroxide coat ing and ind ica tes  the  

area of d i f fus ion .  

Diffusion furnace. The heat ing element i s  a c o i l  of w i r e  

between two s t a i n l e s s  steel p l a t e s  and insu la ted  f r a e  them 

with mica. 

S i l icon  c r y s t a l  a f t e r  d i f fus ion  i n  t h e  furnace of Fig. 5 and 

a f t e r  s t a i n  e tching.  The l i g h t l y  s t a ined  regions a r e  t he  

l i t h ium diffused a reas ,  and t h e  darkly s ta ined  region i s  t h e  

undiffused p-type mater ia l .  Diffusion on the  sides of t h e  

crystal is q u i t e  evident. 

S i l icon  c r y s t a l  of Fig. 6 a f t e r  sanding and s t a i n  etching. 

The s ide  d i f fus ion  of l i t h i u m  has been removed, and a sharp,  

even junct ion can be seen. 

Back sur face  of s i l i con  c r y s t a l  a f t e r  d r i f t i n g .  The dark area 

is  t h e  uncompensated p-type material. 

Baok sur face  of s i l i con  c r y s t a l ,  a f t e r  d r i f t i n g  as seen under 

a low-power microscope. The do t s  a r e  rather blurred and i n d i s t i n c t .  
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Figure Captions (continued) 

Fig. 10 Back sur face  of s i l i con  c r y s t a l  of Fig. 9 a f t e r  gddi t iona l  

lapping and s t a i n  etching. 

Fig. 11 Surface of Fig. 10  a s  seen under a low-power microscope. 

The dots  and c i r c l e s  should be campared t o  Fig. 9 t o  note 

t h e  improveanent i n  sharpness. 

Detector mounted i n  p l a s t i c  p i p e t t e  shown j u s t  a f t e r  the 

f i n a l  pol ish etch. 

Fig. 12 

Fig. 13 Schematic drawing of de t ec to r  showing method of mounting. 

Fig. 14 Finished de tec tor  with top  contact  shown. 







router wall- 
inner wall - i' 
Adjustable 
\ leg 

heater 

'Pyrex 
insulator 

- Platinum 
thermistor 

/ Mounting 

Tte 





Tungsten wire 
I evmoration basket 

Stainless steel 
date Platinum resistor 

M 

wire 



I - -  

I '  
i 
1 
8 
I 
I 
1 
1 
I 
I 
1 
I 
m 
I 
I 
I 
1 
1 



I , -  



1 * -  

I '  





1 -  
I 
1 
I 
I 
z 
I 
I 
1 
1 
1 
1 
8 
I 
I 
I 
I 
1 
1 







I- 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
1 



I 



8 

COMHlTER PROGRAM PDR ANALYSIS OF BETA-RAY SPECTRA 

MEASURED WITB SOLID STATE DETECTDRS 

I nt roduc t ion 

This paper describes in detail the Fortran IV program previously 

for the analysis of beta-ray spectra measured with lithium drifted 
1 used 

surface barrier silicon detectors. %he program consists of the following 

major subdivisions: 

(1) 

(2) 

Fitting of the measured spectrum with a Tchebycheff polynomial. 

An iteration procedure using the measured response function 

of the detector in order to extract the true, undistorted spectrum 

, 

from the measured spectrum. 

Computation of the Fermi-Kurie plot using the shape correction 

factor is necessary and determination of the endpoint energy 

by least squares fit. 

(3) 

Description of the program 

To understand the necessity for this program, it must be realized 

that solid state silicon detectors do not produce a constant amplitude 

pulse for all monoenergetic electrons which are incident upon it. 

detector is thick enough so that the range of the particles is less than 

the thickness, then there arethree main reasons for this phenomena: 

If the 

1) The detector has a finite energy resolution. 

2) There is incomplete energy loss by the incident particles as 

a result of backscattering from the face of the crystal. 

may also be some incomplete energy loss as a result of electrons 

There 
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emerging from the sides of the crystal either by virtue of a 

large angle scattering or of the initial angle of incidence. 

3) As a result of the physical characteristics of the crystal such 

as the lifetime, mobility, recombination centers, non-uniform 

electric field distribution, not all of the ion pairs which 

are creeted w y  be ccllected. 

All of these factors may be taken into account in the analysis of 

data simply by measuring the spectra of monoenergetic electrons of varying 

energy. 

However, internal scattering of electrons from the baffles can introduce 

some distortion in the spectrum, and some care must be taken in interpreting 

the data. In general, the response function is assumed to have the simple 

shape shown in Fig. 1. 

This may be done rather simply with a beta-ray spectrometer. 

The response function has a very strong dependence upon energy. 

To specify this dependence, a parameter, A /A the ratio of the number 

of counts under the peals to the total area under the entire curve is defined. 

This is simply the relative number of counts whose energy is measured 

correctly. For computational purposes it is necessary to fit this parameter 

in an analogue fashion. Thus, for the typical curve shown in Fig. 2, 

the low energy end of the curve is approximated by an exponential, e , 

and after some point, Wt, called the transition energy, the curve is fitted 

by a straight line. MW + B, where W is the total electron energy. The 

parameters cy, B, M and B are deterined experimentally, and may be quite 

different for different detectors, 

P t’ 

-a@ i- B) 
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The program i t s e l f  is  appended t o  t h i s  paper. The dimension statements 

ass ign  400 s torage  pos i t ions  s ince  400 channel analyzer w a s  used. 

The format statements are used f o r  the  following purposes: 

300 This statement is used t o  r e a d  i n  the f i r s t  (IO) and las t  (IL) channel 

numbers . 
301 This is used for the ac tua l  data. 

302 This is a heading which states what nucleus is being studied. The 

Z and A of the nucleus must be supplied on a da ta  card. The second 

pa r t  of t h e  heading introduces a t a b l e  of da ta  with the  background 

counts subtracted from the  data. 

303 This statement is used t o  p r in t  o u t  the t a b l e  of 302 and o ther  t ab le s  

a t  var ious stages of t he  program. 

304 This  statement is used to  r e a d  i n  IREPL, the  number of i t e r a t i o n s  

used i n  obtaining the  undis tor ted spectrum, RESOL, a number equal 

t o  t w i c e  the  reso lu t ion  of the de tec tor  expressed i n  number of channels, 

WW, the  energy of t he  f i r s t  channel, BE”2, the  energy d i f fe rence  between 

channels, I K ,  a channel number introduced i f  various branches are t o  

be analyzed and one does not  wish t o  analyze b e l o w  some poin t ,  CHART, 

a number used to label the  particular run. 

305 This statement is used t o  read i n  the  Z and the  A of the  nucleus. 

I t  also reads i n  WO, an estimate of the  end point energy i f  a shape 

cor rec t ion  f a c t o r  is used or zero i f  the spectrum is assumed t o  have 

an allowed shape, IST, the  f irst  channel used i n  the  Fermi-Kurie 

p lo t  and, ILST, t he  l as t  channel used i n  the  Fermi-Kurie plot. 
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306 This is a heading which labels the Tchebycheff fitted data and gives 

the number of iterations used in the fit. 

307 This statement is used to print the resolution of the detector, CHART, 

WW, BET2, and XI(. 

This statement is used to identify the coefficients which are used to 

fit A /A as a function of W. RALPH I s  a, R l "  is the transition 

channel where the exponential fit changes to a straight line fit, 

308 

P t  

RM and RE are the M and B parameters respectively. 

310 This statement is used to label a table of the data after the iterations. 

n o  tables are printed out. The first contains the data after the 

first iteration and the second contains the data after the last iteration. 

311 This statement is used to label a table which contains data for the 

Fewi-Kurie plot. 

312 This statement is used to print out the data for the heading and table 

of the Fermi-Kurie plot. 

313 This statement is used to print the results of the least squares fit 

of the Fermi-Kurie plot, that is the coefficients a and b of the 

straight line fit, aW + b, WC(O), the endpoint energy from the straight 

line fit, and DELY, a weighted average of the error of the fit. 

314 These statements are used to print aut some of the calculations of 
and 
315 the least squares fit, primarily for purposes of checking the fit. 

Statements 1 through 2 of the program are used to read in data. 

Statements 3 through 7 insure that there are an odd number of data points 

and subtract out the background. Statements 8 through 11 take the square 
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root of the data, so t h a t  the numbers t o  be handled by  the Tchebycheff 

subrouting w i l l  be within the range of t h e  computer. 

A t  t h i s  po in t  t h e  Tchebycheff subroutine is called and t h e  data  

is f i t  w i t h  a smooth curve using Tchebycheff polynomials. This is done 

simply t o  prevent the i t e r a t i o n  process from magnifying s m a l l  s t a t i s t ica l  

f luc tua t ions  i n t o  large peaks and valleys.  The advantage of using Tchebycfieff 

polynomial series ra the r  than simple power series is tha t  the  coe f f i c i en t s  

remain unchanged regardless of the number of terms tha t  are added t o  the  

expansion. With a simple power series, the  addition of a higher term means 

tha t  each coef f ic ien t  of each term must be recalculated.  This  subroutine 

is listed a t  the end of the  program and follows the  methods of Birge and 

Weinberg. 
2 

After  the  polynomial f i t ,  the poin ts  of t h e  smoothed curve are squared 

t o  obta in  a smooth curve f i t  t o  the  o r ig ina l  da t a  points.  This is  accomplished 

i n  statements 12 through 17. 

A t  t h i s  point t h e  t r u e  spectrum is  extracted using t h e  de tec tor  

response function. The basic method of t h i s  pa r t  of the program is  r e l a t i v e l y  

simple. The measured spectrum is es sen t i a l ly  t h e  t r u e  spectrum spread out 

by the response function of t he  detector. Therefore, with t h e  measured 

spectrum as a s t a r t i n g  point,  t h e  true s p e c t r u m  i s  estimated. This estimated 

t r u e  spectrum is then spread out  by the  de tec tor  response funct ion and 

compared w i t h  the measured spectrum. If there  is agreement, then the 

estimated true s p e c t r u m  and the t rue  spectrum are t h e  s a m e .  If there 

is no agreement, t h e  estimated t r u e  spectrum is  adjusted i n  some cons is ten t  

fashion. A f t e r  t h i s  adjustment, the  new spectrum i s  spread out  by the 
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detec tor  response function and compared with the measured spectrum. This 

self-consis tent  calculat ion i s  continued u n t i l  the desired agreement is 

obtained. 

The f i r s t  s t e p  is to f ind  some way of estimating t h e  true spectrum. 

3 
The measured spectrum is related to the t r u e  s p e c t r u m  by 

where  N (W) is t he  measured counting r a t e  a t  sane energy W, Nt is the  

t r u e  (undistorted) counting r a t e  at W ' ,  and L ( W , W * )  is the  f r ac t ion  of 

the number of e lec t rons  of energy W' incident  on the  detector which a re  

observed a s  having energy W .  The simplest approach is to  assume tha t  the 

measured spectrum is t he  t r u e  s p e c t r u m  and to  make t h e  subs t i t u t ion  

N,(W*)  = N (W') i n  Eq. 1. 

estimate t o  the t r u e  spectrum is then obtained by subs t i t u t ing  t h i s  new 

spectrum i n t o  the equation 

m 

A measured spectrum N A ( W )  is obtained. An t 

- N (w)] 
m 

Basical ly ,  t h i s  approximation amounts to  assuming t h a t  the measured spectrum 

is  spread out by the  same amount tha t  the  t r u e  spectrum was spread out. 

Therefore, by simply adding back i n  the  differences t o  the  o r ig ina l  measured 

spectrum w e  should obtain the  t r u e  spectrum. Thihs is  obviously not qu i t e  

cor rec t ,  Therefore, t he  "true" spectrum N'$W) is subs t i tu ted  i n t o  Eq. 1, 
f 

t .  
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t h e  r e s u l t  is compared i n  Eq. 2, and the next approximation N"(W) obtained. 

The process is continued u n t i l  the  desired agreement is obtained. This procedure 

is  carried out  i n  the program i n  s teps  17 through 33. 

t 

As an example of how t h i s  part of the program w o r k s ,  taken any point  

. Since the detector has a f i n i t e  energy reso lu t ion ,  these  counts w i l l  
Ni 

be spread over a t r i angu la r  peak whose base is t w i c e  t h e  reso lu t ion  of t he  

detector and whose height  Nzi is given by 

where A is the base width in channels. 

Many of t h e  counts from t h i s  peak are d i s t r i b u t e d  over a constant 

amplitude t a i l ,  whose height  is given by 

= Nzi[ (A /A ) - 1],/[ (2/A)(IO + i -1) - 11 
N3i t P  

where IO As t he  first channel; These t w o  amplitudes are ca lcu la ted  i n  

t h e  s t eps  j u s t  preceding statement 22. 

Now t o  the counts in the  i t h  channel must be added a l l  t h e  cont r ibu t ions  

from t he  backscatter t a i l s  of the higher energy peaks. 

i n  s t e p s  22 through 25. 

t h e  peaks on e i t h e r  s ide  of t h e  i t h  peak are now added t o  N 

t r i b u t i o n s  are given by SUM2 in s t ep  30. 

equation 2. 

and v i s u a l l y  examine the r e s u l t s  t o  determine the point  a t  which the i t e r a t i o n  

This is accomplished 

The contr ibut ions due t o  t h e  f i n i t e  r e so lu t ion  of 

These con- 
i' 

Steps 31 and 32 correspond t o  

It has been found s i m p l e s t  t o  perform a number of i t e r a t i o n s  

i s  stopped. 
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The Fermi-Kurie plot  i s  calculated i n  s teps  35 through 47. A s  part 

of t h i s  p lo t ,  the complex gamma function is calculated with a subprogram 

and the exact Coulomb factors  are also calculated. Final ly ,  i n  the reinainder 

of the program a least-squares f i t  of the Fermi-Kurie p lot  i s  made, and the 

errors are calculated. 
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FIGURE CAPTIONS 

F i g .  1 Simple shape assumed for response function. 

F i g .  2 A /A for a typical  detector as a function of electron energy W .  
P t  
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- A  FOR TCH 

DIMEQS13N RN ( 4 0 0 ) s R N 5 ( 4 0 0 )  

DIMENSION R N ~ 1 ~ 0 0 ) r W ( 4 0 0 ) , R A T I 0 ( 4 O ~ ~ , R N 2 ( 4 ~ ~ ) , R N 3 ( 4 0 ~ )  

300 FORMAT ( 8 1 1 0 )  

301  FORMAT I 8 F l O o C  1 

3 0 2  FORMAT (42HlTCHEBVCHEFF POLVNOMIAC F I T ,  E T C o ,  FOR Z =,fSo1,3X1 

1 3HA =,F7.1/76HOORIGINAL D A T A ,  WITH SMALLEST COUNT LE5S 1 S'ISTRACT 

2EO. STARTING W f T Y  CHAN!f!EL:!k! 

30'3 FORMAT ( l X ~ I O F I l . 1 )  

3 0 4  FORMAT ~ 1 1 0 , 3 F 1 0 0 0 ~ 1 1 O ~ F 1 0 = 0 ~  

3 0 5  FORMAT ( 3 F 1 0 0 f i , 2 1 1 0 1  

306 FORMAT (33HGTCHEBYCHEFF R E S l J L T S  OF DEGREE, I 4  1 

3 0 7  FORMAT (13HORESOLUTICN =,F60393Y,?HChART =,FlQo7,3X,4HVbI = , F i O o 6 *  

1 3X,fiHSET2 =,F lOoh,3X,4HIK =,I41 

3 0 8  FORMAT (31HOAP/AT COEFFICIENTS ARE ALPHA =,FLOo6rl '3Y,9HFOR W GEQ, 

1 F6o292X97HARE M = * F 1 2 0 6 , 2 X ~ 3 H 9  = r F 1 2 m h )  

3 0 9  FORMAT ( 1 X , 1 2 F I O o 5 )  

3 1 0  FORMAT (43HOCOUNTS, AFTES CORRECTIONS OF !TERAT!OY N ~ Q o , f 3 s 2 7 t i  4 R E 1  

1 START ING M I  TH CH4NNFL 9 I4 1 

3 1  1 FORMAT ( 11HlSHAPE WO = , F l o e 6  9 3X 9 5 H I  ST 9 I5 /8HnCHANNEL 9 4 X 9 2 H W C  9 8 x 9  

1 SHFERWI ~ ~ X I S H S H A P E , ~ X I ~ H L A M B D A )  

3 1 2  FORMAT ( l X , I S , ? F 1 1 0 6 , F 1 3 0 6 , 2 F ~ ~ 0 6 )  

3 1 3  FORMAT (10H!3LINE,  A = ,F905 ,3X~3HB =,F '3*5*3X,7HWC(O~ =,FlPo6,3X, 

1 7HDEL-Y = , F 1 3 0 6 )  

3 1 4  FORMAT ( I H O ~ I 5 ~ 5 F 1 3 0 5 1  

3 1 5  FORMAT (15HODELTA LAPIBOA = , ~ 3 ] . 3 * ? X * 4 H c Y  = , F l l e 4 , 7 X * 4 H S A  = r F l l . 4 ~  

1 3X,4HSB = , F l l o 5 !  

1 READ 300, I O , I L  

I F  (1LoEQ.O) STOP 

K = I L  - I 3  + 1 
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1 1  

R E A 0  3 04 9 

READ 305, Z 2 r  A 2 9  “0, I S T ,  I L S T  

I R E P L  9 RE S O L  \dW 9 BE T 2 9 I K. ,CHART 

R E A D  301, RALPH, FITRAP19 R P 9  R R  

P R I N T  302,  Z Z , A Z , I O  

T S T A  = K/Z.@ 

I = T S T A  

IF ( T S T A  I - 000005) 4 9 5 9 5  

K = K - 2  

I L  = I L  - 1 

I F  ( I L o L T o I L S T I  I L S T  = I L  

T S T A  = R N ( K I  

J = K - 1 6  

DO 6 I = J,K 

I F  ( R N ( 1 ) o L T o T S T A )  T S T A  = R N f I )  

CONTINUE 

T S T A  = T S T A  - 1.0 
DO 7 I = 1 r K  

R N ( I I  = R N ( I I  - T S T A  

P R I N T  303, ( R N ( I 1 ,  I = 1 r K )  

DO 1 1  I = 1 , K  

R N 5 ( I )  = R N ( 1 )  

I F  ( R N ( I I )  9,10910 

R N I I )  = -SQRT ( - R N ( I I )  

GO T O  11 

R N t I l  = S O R T  ( R N ( 1 ) )  

C O N T I N U E  

P R I N T  3079 RESOL,CHART,WW,RET2, IK 

P R I N T  308, RALPH,RTRAN,RM,RB 

C A L L  T C H E B  ( R N , I O I ! L S I T L )  

12 DO 1 5  I = 1,K 



13 

14  R 
1 5  

16 

8 1 7  

2 0  

8 2 1  

8 22 

C 23 

I 24 

1 SUMl = SUMl + RN3(I) 1 

DO 23 I = 1, IADD 

SUMl = SUMl - RN3(1) 
DO 32 I = 1 9 Y  

I A D O P  = I + IADE 

IADDM = I - IADD 

IF (IADDP +I - K )  2 5 9 2 5 9 2 4  
SUM1 = ( l e 0  

GO TO 26 



2 5  

26  

2 7  

2 8  

2 9  

30 

3 1  

3 2  

33 

35 

SUMl  = SUM1 - RN?I ( IADDP)  

SUM2 = 0.0 

TSTA = 2 .0* (10+1-11 

DO 3 1  J = IADDM9IADDP 

IF ( J )  27927928 

.SUM2 = SUM2 + (RESOL - A B S ( 2 e 0 * ~ 1 C + J - I ) - T S T A ) ) * R N l * 2 e ~ * E X P  ( - R A L P H  

1 *(-1eO+(WW+BET2*(J+IP)))) / (RESOL*RFSOL) 

GO TO 3 1  

I F  ( J o E O m i )  GO TO 3 1  

IF (J-K) 3 0 9 3 0 9 2 9  

StJM2 = SLJF”2 + (RESOL - A R S ( Z e C J * (  IO+J-l 1 - T S T A )  )*RNK*ZoO*(RR+RM* 

1 ( W W + B E T 2 * ( J + I P ) I ) / ( 2 E S O L + R E S O C )  

GO TO 3 1  

SUM2 = SUM2 + (RESOL - ABS(2.9*(IO+J-I) - T S T A ) l * f ? N 2 ( J ) / R E S @ L  

CONT I NUE 

T S T A  = R N 4 ( I )  - R N 2 I I )  - S U M l  - SUM2 

R N ( I )  = R N ( I I  + TSTA 

I F ( ( 1 R E P e N E e I R E P L )  .AND. ( I R E P m N E o  1))GO T O  3 3  

P R I N T  3 1 0 9  I R E P I I C  

PRINT 303, ( R N ( I ) *  r = I ~ Y )  

CONT I NUE 

ALPH2=0.0072972 

P I  = 3 . 1 4 1 5 9 3  

ALPHZ = ZZ*ALPHZ 

GAM2 = SQRT ( 1 0-ALPHZ*ALPHZ 1 

GAM3=5QRT(4oO-ALPHZ*ALPHZ) 

R Z = ( C B R T ( A 2 )  ) *ALPH2 

POW = 2eO*(GA?42-100)  

POT=ZeO*(GAY3-GAM2-1) 

FERMZ = 2mO*( leO+GAM2) 

FERM3=2eO+CAM3 



40 

4 1  

T S T A  = 2 0 G + G A M 2 + 1 0 0  

GAMD = CCAM ( T S T A y 0 . 0 )  

GAMO = E X P  ( 2 * 0 * G A M D I  

G O M E = 1 4 4 . C * G A Y D  

T S T R = l . @ + Z * C * G A M 3  

GAME=CGAM(TSTS,C' .C)  

G A M E = E X P ( 2 m O * G A M E )  

WOSQ = WO*WO 

P R I N T  311  . fh ' i j ,  iST 

SCJML = 000 

suvw = 0.0 

SUMWW = 0.0 

SUMLW = 9.0 

SIJMLL = 0.0 

SUMDL = 0.0 

K = ILST - I S T  + 1 

DO 47 I = 10, I L S T  

wc = w (1+1-191 

P 2  = SQRT (WC*WC - 1.0)  

Y 2  = A L P H Z * W C / P 2  

GAMN = CGAFA ( G A M 2 9 Y 2  

GAMN = E X P  (2*O*GAMN 

G A M M = C G A Y ( G A ! ' J 3 r Y 2 )  

GAMM=EXP(2 .@*GAMM)  
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42  J = I - I 0 + 1  

I F  ( R N 4 ( J )  1 44943944 

44 Y P R  = R N 5 ( J ) * Q N ( J ) / R N 4 ( J I  

I F  ( M P R I  45946946  

45  IF ( S U M W W o L T o C o C 0 0 0 0 2 1 )  5 C  T O  1 

4 3  K = K  - I L S T  + I - I 

GO TO 48 

46 T S T B  = l e O I ( P 2 * W C * F E R M C * S H A P C )  

R L A M B 3  = SQRT i M P R * T S T Z j  

D L A M B  = O e S * T S T B  

I F  ( I o L T o I S T )  GO TO 47 

SUWL = SUML + H L A I 4 R 3  

S U M L L  = S U M L L  + R L A M t 3 3 * R L A M B 3  

SUMW = SIJMW + WC 

SllMWW = SUMWW + WC*WC 

SUMLW = SUMLM + W C * R L A M 6 3  

S U M D L  = SUMOL + D L A M B * D L A M R  

47 P R I N T  312,  11 WC9 FERMC, SHAPCI R L A V B ?  

48 WBAR = SUMW/K 

R L R A R  = S U M L / K  

R 2  = (SUMLW - W B A R * S U M L ) / ( S U u W W  - WRAR*SL'MW) 

T S T A  = R L B A R  - 3 2 * W R A R  

W X  = - T S T A / R 2  

D E L Y  = SQRT ( S U M D L / ( K - 2 1 1  

P R I N T  3 1 3 9  T S T A 9 B 2 9 W X 9 D E L Y  

P R I N T  3 1 4 9  K,SUMW ,SUML , . jL l?r lWW 9.SUMLW9 SCMLL 

S L S Q U  = SUYL*S IJML 

SWSQU = SUMW*SUMW 

SLWSQ = S U M t W  * SUMLW 

T S T A  = K*SUMMW - SWSQU 

DELL = S U M L L  - ( (SLSQU*SUMWW - 20O*SUVLW*SUMW*SUML+K*SLWSQ~/TSTA) 
I 



SA = SYSSQRT ISUMWW/TSTAI 

SB = SY*SQRT ( K I T S T A )  

P R I N T  315, DELL,SYISATSR 

GO TO 1 

END 

- A  FOR CGAM 

FlJNCT I O N  CGAM f X I Y  1 

REAL 1 9 Z L N  

IF ( X  - l o * ( ) )  2 9 1 9 1  

1 XP = x 

GO TO 3 

2 I = x  

TSTA = X - I 

XP = 9.0 + TSTA 

3 Y S Q  = Y * Y  

TSTB = XP*XP + YSQ 

R9ZLN = O * S * A L O G ( T S T B )  

I 9 Z L N  = ATAN ( Y / X P )  

TSTA = XP - 0 - 5  

CGAM = TSTA*R9ZLN - Y " I 9 Z L N  - XP + r).9159385 + X P / ( 1 2 * 0 * T S T B )  

TSTA = 1.0 

TSTB = X 

4 IF ( X P  - 0.0035 - f S T B )  6 9 5 9 5  

5 TSTA = TSTk+fTSTB*TSTB + Y S Q )  

TSTB = TSTB + 1.0 

GO TO 4 

6 CGAM = CGAM - 0 * 5 * A L O G ( T S T A I  

1 RETURN 



END 

-A FOR T C H E B  

S U B R O t I T I  NE T C H E G  ( R N 9  1 0 9  I L  9 I T L  I 

C TCHEBYCHkFF P O L Y N O M I A L  F I T 9  U S i Y G  H I G H E S T  3EGREE L E Q  1 8  T H A T  WON-T GO 

C O U T  OF RANGE. I F  T H E R E  A R E  AN E V E N  NO. OF POINTS, L9.ST P O I N T  W I L L  

C B E  THROWN OUT AND I L  C H A N G E D  A C C O R Q I N G L Y  

R E A L  MUIM 

D I M E N S I O N  R N ( 4 0 0 ) , C ( 2 C ) , M ( 2 0 ) , A ( 2 0 ) * ? ( 2 ~ ) 9 T ( 2 0 ) * T S ( 4 ~ 9 9 2 ~ )  

300  F O R M A T  (26HCCS9 S T A R T I N G  W I T H  C 1 ,  APE/(lX9BF14.61) 

7 0 1  F O R M A T  ( 4 3 H Q y S  D I ‘ / f D E D  d V  A C C U t J U L f i T I V E  TC) Tt4E F ’Ot . fCR, I? r  

1 22H ARE,  S T A R T I N G  W I T H  Y O I / ( I Y ~ H E ~ L . ~ )  1 

702  F O R M A T  126HOAS9 S T A R T I N G  W f T Y  A(;, 4 5 F / (  ] Y 9 8 F - J 4 . 6 )  1 

303 F O R M A T  (26Hi_tRS, STARTING W I T H  PO, A R E / ( l Y + t ? E 1 4 . 6 1 )  

K = I L  - I3 + 1 

T S T A  = K / 2 . 0  

I = T S T A  

I F  ( T S T 4  - I - 0 . 0 0 0 5 )  1 9 2 9 2  

1 K = K - 1  

I L  = I L  - 1 

2 E Y 4 X  = ( K  - l o O ) / 2 . 0  

I M A X  = E M A X  + O o O O O 5  

M O  = K 

MOSQ = MO*MO 

T S T A  = ( M q S Q  - l . r ) ) /12 .0  

ROSCJM = 0.0 

A 0  = 0.0 

I C T  = 0 

I E X P  = 2 

T S T B  = T S T A / 1 0 0 0 . 0  



1 -  

II 
8 

DO 4 I = 2 9 I T L  

4 M ( I )  = C(I)*M(I-l)*TSTA 

P R I N T  ~ O ~ , I E X P , M O , I M ( I ) ~ I  = L I T L )  

I M A X l  = I M A X  + 1 

DO 1 2  L = I r I V A X l  

EPS = L - 1.0 

IP = L + I Y A X  

1 M  = I M A X  + 2 - L 

T O  = 1.0 

T ( 1 )  = EPS 

DIFF = R N ( I P )  - R N ( I F I )  

SUM = R N ( I P )  + R N ( I Y )  

ROSUM = ROSUM + R t d (  I F ) * f ? N (  IP)+RN( I ! 4 ) * R N (  I M )  

I F  ( I P  - I M )  7,697 

6 R O S U M  = ROSUM - R N ( I P ) * R K ( I P )  

DIFF = RNIIP) 

SUM = DIFF 



II 7 A 0  = A 0  + S1JM 

ICT = ICT + 1 

12 CONTINUE 

A 0  = A O / M O  

8 

I 
I 
I 
E 
1 

DO 15 I = 19ICT 

Y = A0 

Y M  = Y 

IP = I + IMAX 

IM = I M A X  + 2 - I 

RN(IP) = Y 

15 RN(IM) = YM 

RETURN 

END 

-AN XQT TCH 


